HALF-LIFE PROBLEMS

Name	Block
1. An isotope of cesium (cesium-137) has a half-life of 30 years disintegrates over a period of 90 years, how many g of cesium-l	. If 1.0 g of cesium-137 .37 would remain?
2. Actinium-226 has a half-life of 29 hours. If 100 mg of actinition period of 58 hours, how many mg of actinium-226 will remain?	um-226 disintegrates over a
3. Sodium-25 was to be used in an experiment, but it took 3.0 from the reactor to the laboratory. If 5.0 mg of sodium-25 was how many mg of sodium-25 were placed in the reaction vessel life of sodium-25 is 60 seconds?	minutes to get the sodium removed from the reactor, 3.0 minutes later if the half-
4. The half-life of isotope X is 2.0 years. How many years woul of X to decay and have only 0.50 mg of it remain?	d it take for a 4.0 mg sample
5. Selenium-83 has a half-life of 25.0 minutes. How many mining sample to decay and have only 1.25 mg of it remain?	nutes would it take for a 10.0
6. The half-life of Po-218 is three minutes. How much of a 2.0 15 minutes? Suppose you wanted to buy some of this isotope, for it reach you. How much should you order if you need to u material?	and it required half an hour

Use Reference Table on side to assist you in answering the following questions. Equations:

1/2 lifes:

As-81 = 33 seconds

Au-198 = 2.69 days

C-14 = 5730 years

1 How long does it take a 100.00g sample of As-81 to decay to 6.25g?

2. How long does it take a 180g sample of Au-198 to decay to 1/8 its original mass?

3. What percent of a sample of As-81 remains un-decayed after 43.2 seconds?

4. What is the half-life of a radioactive isotope if a 500.0g sample decays to 62.5g in 24.3 hours?

5. How old is a bone if it presently contains 0.3125g of C-14, but it was estimated to have originally contained 80.000g of C-14?

Name		Haif-life Worksheet
Half-life Worksheet		
1. What is radioactivity?		
2. What is nuclear radiation?		
'Vhat is half-life?		
we start with 400 atoms of a radioactive substa		
		lf-lives? after four half-lives?
5. If we start with 48 atoms of a radioactive substandal feet two half-lives? after three half-lives?		
6. If we start with 16 grams of a radioactive substan	ice, h	now much will remain after three half-lives?
7. If we start with 120 atoms of a radioactive substart 8. Which type of radiation (beta particles, gamma rate) a piece of paper		
c) a piece of lead		Radioactive Decay of Carbon-14
d) a large block of lead		100%
d) d laigo blook of load		†
Use the following graph to answer questions9-12	!	75% L Amount
		of
	;	carbon-
	"	14 50%+
	ŧ	
	ļ	25%
	1	
•	1	12.5% +
$\frac{N}{1}$		
f.	1	0 5730 10,740 16,110
	1	Time (years)
9. How long is a half-life forcarbon-14?	'	
10. If only 25% of the carbon-14remains, how old is		
11. If a sample originally had120 atoms of carbon-14	4, ho	w many atoms will remain after 16,110
years?		
12. If a sample known to be about 10,740 years old	has 4	400 carbon-14 atoms, how many atoms were in the
sample when the organism died?		
		T
Use the following chart to answer questions 13-16.		dioactive Substance Approximate half-life
· L	Rad	don-222 4 days
	Iodi	ine-131 8 days
	Rad	dium-226 1600 years
·	Car'	bon-14 5,730 years

Plutonium-239

Uranium-238

24,120 years

4,470,000,000

13. If we start with 8000 atoms of radium-226, how much would remain after 3,200 years?

14. If we start with 20 atoms of plutonium-239, how many would remain after 48,240 years?

if we start with 60 atoms of uranium-238, how many remain after 4,470,000,000 years?

16. If we start with 24 atoms of iodine-131, how many remain after 32 days?

H	AL	F-L	IFE	CAL	CU	LAT	IONS
---	----	-----	-----	-----	----	-----	------

Name _____

Half-life is the time required for one-half of a radioactive nuclide to decay (change to another element). It is possible to calculate the amount of a radioactive element that will be left if we know its half-life.

Example: The half-life of Po-214 is 0.001 second. How much

of a 10 g sample will be left after 0.003 seconds?

Answer: Calculate the number of half-lives:

0.003 seconds x <u>1 half-life</u> = 3 half-lives

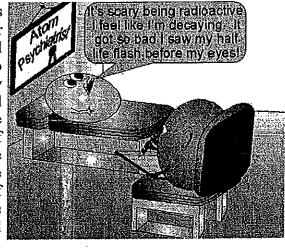
0.001 second

After 0 half-lives, 10 g are left. After 1 half-life, 5 g are left.

After 2 half-lives, 2.5 g are left.

After 3 half-lives, 1.25 g are left.

Solve the following problems.


- 1. The half-life of radon-222 is 3.8 days. How much of a 100 g sample is left after 15.2 days?
- 2. Carbon-14 has a half-life of 5,730 years. If a sample contains 70 mg originally, how much is left after 17,190 years?
- 3. How much of a 500 g sample of potassium-42 is left after 62 hours? The half-life of K-42 is 12.4 hours?
- 4. The half-life of cobalt-60 is 5.26 years. If 50 g are left after 15.8 years, how many grams were in the original sample?
- 5. The half-life of I-131 is 8.07 days. If 25 g are left after 40.35 days, how many grams were in the original sample?
- 6. If 100 g of Au-198 decays to 6.25 g in 10.8 days, what is the half-life of Au-198?

Name		 	_

Date Period ____

Working With Half-Life

When radioactive materials decay they release high speed particles that bang into other unstable radioactive atoms, hastening their decay. As the process proceeds, the amount of radioactive material decreases. This causes the number of high speed emissions to decrease. The fewer emissions there are, the slower the decay process becomes. As a result, large samples of radioactive material decay at a faster rate than small samples. In fact, as the sample size decreases, the rate of decay slows in such a way that the amount of time it takes for half the sample to decay is constant regardless of the sample size. In other words, it takes 500 g of uranium the same amount of time to decay into 250 g of uranium as it does for 2 g of uranium to decay into 1 g of uranium. The amount of time it takes for a radioactive sample to decay to half its original mass is called the half-life.

The easiest way to solve half life problems is to set up a table.

Sample Problem

How much 42K will be left in a 320 g sample after 62 h?

Step 1: Look up the half life in *Table N*, the table of Selected Radioisotopes

Step 2: Set up a table showing the mass, time elapsed, the fraction remaining, and number of half lives starting with the initial conditions and ending when the full time has elapsed. For each half life elapsed, cut the mass in half, increase the time by an amount equal to the half life, cut the fraction in half, and add one to the number of half lives.

Mass	Time	Fraction	Half lives
320	0	1	0
160	12.4	1/2	1
80	24.8	1/4	2
40	37.2	1/8	3
20	49.6	1/16	4
10	62	1/32	5

Following this procedure it is possible to determine the final mass, the time elapsed, the fraction of the original sample, or the number of half lives elapsed.

Answer the questions below using data from Table N, the table of Selected Radioisotopes.

1. How long will it take for 30 g of ²²²Rn to decay to 7.5 g?

 How many grams of ¹⁶N will be left from a 16 g sample after 21.6 s?

Page 2

3. Ho	w many half li	ves will it take	for 50 g	of 99Tc to de	cay to 6.25 g?
-------	----------------	------------------	----------	---------------	----------------

- 4. What fraction of a sample of ³²P will be left after 42.9 d?
- 5. How long will it take for a 28 g sample of ²²⁶Ra to decay to 3.5 g?
- 6. How long will it take for 50% of a sample of ¹³¹I to decay?
- 7. After 9.8×10^{10} y, how many grams will be left from a 256 g sample of 232 Th?
- 8. How long will it take for 500 g of 90Sr to decay to 125 g?
- 9. What fraction of a sample of ³H will be left after 36.78 y?

Table N Selected Radioisotopes

Nuclide	Half-Life	Decay Mode	Nuclide Name
¹⁹⁸ Au	2.69 d	β-	gold-198
¹⁴ C	5730 y	β-	carbon-14
³⁷ Ca	175 ms	β^+	calcium-37
⁶⁰ Co	5.26 y	β-	cobalt-60
$^{137}\mathrm{Cs}$	30.23 y	β-	cesium-137
$^{53}{ m Fe}$	8.51 min	β+	iron-53
²²⁰ Fr	27.5 s	α	francium-220
$^{3}\mathrm{H}$	12.26 y	β~	hydrogen-3
^{131}I	8.07 d	β-	iodine-131
$^{37}\mathrm{K}$	1.23 s	β+	potassium-37
⁴² K	12.4 h	β-	potassium-42
$^{85}\mathrm{Kr}$	10.76 y	β-	krypton-85
16 _N	7.2 s	β-	nitrogen-16
¹⁹ Ne	17.2 s	β+	neon-19
$^{32}\mathrm{P}$	14.3 d	β-	phosphorus-32
239 _{Pu}	$2.44 \times 10^4 \text{ y}$	α	plutonium-239
²²⁶ Ra	1600 y	α	radium-226
$^{222}\mathrm{Rn}$	$3.82~\mathrm{d}$	α	radon-222
90Sr	28.1 y	β-	strontium-90
⁹⁹ Tc	$2.13 \times 10^{5} \text{ y}$	β-	technetium-99
²³² Th	$1.4 \times 10^{10} \text{y}$	a	thorium-232
²³³ U	$1.62 \times 10^5 \mathrm{y}$	α	uranium-233
²³⁵ U	$7.1 \times 10^{8} \text{y}$	α	uranium-235
²³⁸ U	$4.51 \times 10^{9} \mathrm{y}$	α	uranium-238
+17 +	· · · · · · · · · · · · · · · · · · ·		

ms = milliseconds; s = seconds; min = minutes; h = hours; d = days; y = years