Honors Chemistry Classwork: Equilibrium

Potential Energy Diagrams

1. Which of the letters a-f in the diagram represents the potential energy of the products? \qquad
2. Which letter indicates the potential energy of the activated complex? \qquad
3. Which letter indicates the potential energy of the reactants? \qquad
4. Which letter indicates the activation energy? \qquad
5. Which letter indicates the heat of reaction? \qquad
6. Is the reaction exothermic or endothermic? \qquad
7. Which letter indicates the activation energy of the reverse reaction? \qquad
8. Which letter indicates the heat of reaction of the reverse reaction? \qquad
9. Is the reverse reaction exothermic or endothermic? \qquad

10. The heat content of the reactants of the forward reaction is about
\qquad kilojoules.
11. The heat content of the products of the forward reaction is about
\qquad kilojoules.
12. The heat content of the activated complex of the forward reaction is about \qquad kilojoules.
13. The activation energy of the forward reaction is about \qquad kilojoules.
14. The heat of reaction $(\Delta \mathrm{H})$ of the forward reaction is about \qquad
 kilojoules.

Time
6. The forward reaction is \qquad (endothermic or exothermic).
7. The heat content of the reactants of the reverse reaction is about \qquad kilojoules.
8. The heat content of the products of the reverse reaction is about \qquad kilojoules.
9. The heat content of the activated complex of the reverse reaction is about \qquad kilojoules.
10. The activation energy of the reverse reaction is about \qquad kilojoules.
11. The heat of reaction (ΔH) of the reverse reaction is about \qquad kilojoules.
12. The reverse reaction is \qquad (endothermic or exothermic).

Collision Theory

1. Chemical reactions occur when reactants collide. For what reasons may a collision fail to produce a chemical reaction?
2. If every collision between reactants lead to a reaction, what determines the rate at which the reaction occurs?
3. What is the activation energy of a reaction, and how is this energy related to the activated complex of the reaction?
4. What happens when a catalyst is used in a reaction?
5. Name 4 things that will speed up or slow down a chemical reaction.
6. Draw an energy diagram for a reaction. (label the axis)

Potential energy of reactants $=350 \mathrm{KJ} /$ mole
Activation energy $=100 \mathrm{KJ} /$ mole
Potential energy of products $=250 \mathrm{KJ} /$ mole
7. Is the reaction in \# 6 exothermic or endothermic? Explain.
8. How could you lower the activation energy for the reaction in \#6?

Equilibrium Expressions

1. Calculate the equilibrium concentration of HI for the reaction: $2 \mathrm{HI}=\mathrm{H}_{2}+\mathrm{I}_{2}$ if $\mathrm{Keq}=0.0186$ and if the equilibrium concentrations are $\left[\mathrm{H}_{2}\right]=0.00290$ and $\left[\mathrm{I}_{2}\right]=0.0017$
(Ans: 0.0163 M)
2. Calculate the equilibrium concentrations at $400^{\circ} \mathrm{C}$ of NH_{3} for the reaction: $\mathrm{N}_{2}+3 \mathrm{H}_{2}=2 \mathrm{NH}_{3}$. The equilibrium concentrations for the reactants at $400^{\circ} \mathrm{C}$ are $\left[\mathrm{N}_{2}\right]=0.45 \mathrm{M}$ and $\left[\mathrm{H}_{2}\right]=1.10 \mathrm{M}$. The Keq at this temperature is 0.0017 .
(Ans: $\left[\mathrm{NH}_{3}\right]=0.032 \mathrm{M}$)
3. For the following equilibrium reaction: $\mathrm{N}_{2} \mathrm{O}_{4}=2 \mathrm{NO}_{2}$, a 3 liter flask at equilibrium is found to contain 10.8 moles of $\mathrm{N}_{2} \mathrm{O}_{4}$ and 5.25 moles of NO_{2}. Calculate Keq.
4. At a given temperature, the $\mathrm{K}_{\text {eq }}$ for the reaction $2 \mathrm{HI}(\mathrm{g}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})$ is 1.40×10^{-2}. If the concentration of both H_{2} and I_{2} at equilibrium are $2.00 \times 10^{-4} \mathrm{M}$, find the concentration of HI .
(Ans: 0.00169M)
5. Acetic acid dissociates in water. If $\mathrm{K}_{\text {eq }}=1.80 \times 10^{-5}$ and the equilibrium concentrations of acetic acid is 0.09986 M , what is the concentration of $\mathrm{H}^{+}(\mathrm{aq})$ and $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}(\mathrm{aq})$?
(Ans:0.00134M)
$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq}) \rightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}(\mathrm{aq})$
6. At $60.2^{\circ} \mathrm{C}$ the equilibrium constant for the reaction $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$ is 8.75×10^{-2}. At equilibrium at this temperature a vessel contains $\mathrm{N}_{2} \mathrm{O}_{4}$ at a concentration of $1.72 \times 10^{-2} \mathrm{M}$. What concentration of NO_{2} does it contain?
(Ans: 0.0388M)
7. At equilibrium, K for the decomposition of $\mathrm{HI}(\mathrm{g})$ was found to be 1.07×10^{-5}. The equilibrium concentration of $\mathrm{HI}(\mathrm{g})$ was found to be 0.129 M . Calculate the concentration of I_{2} at equilibrium.
(Hint - Let $x=$ the concentration of I_{2}. What would the concentration of H_{2} be if x is the concentration of I_{2} ? Refer to the coefficients of the equation to help you.)

$$
2 \mathrm{HI}(\mathrm{~g}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})
$$

(Ans: 0.000422M)
8. In each problem, calculate the missing concentration or constant at equilibrium.

	$[\mathrm{HI]}$	$\left[\mathrm{H}_{2}\right]$	$\left[\mathrm{L}_{2}\right]$	$\mathrm{K}_{\text {eq }}$	
8.	1.78	0.172	0.172	X	(Ans: 0.00934)
9.	X	0.242	0.242	0.217	(Ans: 0.519)
10.	0.78	0.112	X	2.06×10^{-2}	(Ans: 0.112)

ICE Charts in Equilibrium Expressions

1. 1.60 moles of W and 2.4 moles of X react slowly in a 2 liter container to produce U and V according to the following equation: $2 \mathrm{~W}+3 \mathrm{X}=\mathrm{U}+2 \mathrm{~V}$. At equilibrium, 0.50 mole of U is present. Calculate Keq.
(Ans: Keq=7.6)
2. Given: $A+2 B=3 C+D .5 .0$ moles of A and 6.0 moles of B are originally placed in a 10 liter container. At equilibrium only 3 moles of B are left. Calculate Keq.
3. The reaction: $A=2 C+B$ takes place in a 2.0 liter container. 7.5 moles of A are originally placed in the container and at equilibrium 3.0 moles of C have been produced. Calculate Keq (Ans:0.56)
4. We place $0.064 \mathrm{~mol}_{2} \mathrm{O}_{4}(\mathrm{~g})$ in a 4.00 L flask at 200K. After reaching equilibrium, the concentration of $\mathrm{NO}_{2}(\mathrm{~g})$ is 0.0030 M . What is K for the reaction: $\mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})} \leftrightarrow \mathrm{NO}_{2(\mathrm{~g})}$
5. Phosphorus pentachloride decomposes into phosphorus trichloride and chlorine gas. What is the initial concentration of phosphorus pentachloride if at equilibrium the concentration of chlorine gas is 0.500 M ? Given $\mathrm{K}=10.00$
6. A 1.000 L flask is initially filled with 1.00 mole of hydrogen gas and 2.000 moles of iodine gas at $448^{\circ} \mathrm{C}$. At this temperature K_{c} is 50.5 . Calculate the equilibrium concentrations for all the chemical species in the reaction, which is hydrogen gas and iodine gas produce HI gas.
HINT: You will need to use your Solver on your graphing calculator!! © How exciting!

LeChatelier's Principle

1. What is Le Chatelier's Principle?

Complete the following charts by writing \rightarrow, \leftarrow, or none for "shift" \& increase, decrease or stay the same for the concentrations of reactants and products.

Reaction: $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})+100.4 \mathrm{~kJ}$

Stress	Equilibrium Shift	[nitrogen]	[hydrogen]	[Ammonia]
Add nitrogen				
Add hydrogen				
Add ammonia				
Remove nitrogen				
Remove hydrogen				
Remove ammonia				
Increase temperature				
Decrease temperature				
Increase pressure				
Decrease pressure				
Add catalyst				

Reaction: $\mathrm{NaOH}(\mathrm{s}) \leftrightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})+10.6 \mathrm{~kJ}{ }^{* *}$ remember pure (s) \& (l) do not affect equilibrium values**

Stress	Equilibrium Shift	Amount NaOH (s)	$\left[\mathrm{Na}^{+}\right]$	$[\mathrm{OH}]$	K
Add NaOH (s)					
Add NaCl (adds Na ions)					
Add KOH (adds OH ions)					
Increase temperature					
Decrease temperature					
Increase P					
Decrease P					

