VSEPR Theory (Molecular Shapes) A = the central atom, X = an atom bonded to A, E = a lone pair on A Note: There are lone pairs on X or other atoms, but we don't care. We are interested in only the electron densities or domains around atom A. | Total
Domains | Generic
Formula | Picture | Bonded
Atoms | Lone
Pairs | Molecular
Shape | Electron
Geometry | Example | Hybridi
-zation | Bond
Angles | |------------------|--------------------------------|------------------|-----------------|---------------|--------------------|----------------------|-------------------|--------------------|----------------| | 1 | AX | AX | 1 | 0 | Linear | Linear | H ₂ | S | 180 | | 2 | AX ₂ | X | 2 | 0 | Linear | Linear | CO ₂ | sp | 180 | | | AXE | □ A— X | 1 | 1 | Linear | Linear | CN ⁻ | | | | 3 | AX ₃ | × | 3 | 0 | Trigonal planar | Trigonal planar | AlBr ₃ | | | | | AX ₂ E | 0
×x | 2 | 1 | Bent | Trigonal planar | SnCl ₂ | sp ² | 120 | | | AXE ₂ | х— А | 1 | 2 | Linear | Trigonal planar | O ₂ | | | | 4 | AX ₄ | X
A
X
X | 4 | 0 | Tetrahedral | Tetrahedral | SiCl ₄ | sp³ | 109.5 | | | AX ₃ E | × ^ X | 3 | 1 | Trigonal pyramid | Tetrahedral | PH₃ | | | | | AX ₂ E ₂ | ×_\$ | 2 | 2 | Bent | Tetrahedral | SeBr ₂ | | | | | AXE ₃ | ~ ^\$^ | 1 | 3 | Linear | Tetrahedral | Cl ₂ | | | | Total
Domains | Generic
Formula | Picture | Bonded
Atoms | Lone
Pairs | Molecular
Shape | Electron
Geometry | Example | Hybridi
-zation | Bond
Angles | |------------------|--------------------------------|---|-----------------|---------------|--------------------|----------------------|-------------------|--------------------------------|------------------| | 5 | AX ₅ | X—AXXX | 5 | 0 | Trigonal bipyramid | Trigonal bipyramid | AsF ₅ | sp ³ d | 90
and
120 | | | AX₄E | © A × × | 4 | 1 | See Saw | Trigonal bipyramid | SeH₄ | | | | | AX ₃ E ₂ | X—A | 3 | 2 | T shape | Trigonal bipyramid | ICl₃ | | | | | AX ₂ E ₃ | | 2 | 3 | Linear | Trigonal bipyramid | BrF ₂ | | | | 6 | AX ₆ | × × × × × × | 6 | 0 | Octahedral | Octahedral | SeCl ₆ | sp ³ d ² | 90 | | | AX₅E | ××××××××××××××××××××××××××××××××××××××× | 5 | 1 | Square pyramid | Octahedral | IF ₅ | | | | | AX ₄ E ₂ | x. | 4 | 2 | Square planar | Octahedral | XeF₄ | | | - Notes 1. There are no stable AXE_4 , AX_3E_3 , AX_2E_4 or AXE_5 molecules. - 2. All bonds are represented in this table as a line whether the bond is single, double, or triple. - 3. Any atom bonded to the center atom counts as one domain, even if it is bonded by a double or triple bond. Count atoms and lone pairs to determine the number of domains, do not count bonds. - 4. The number of bonded atoms plus lone pairs always adds up to the total number of domains.